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Introduction

This document contains a compilation of my notes regarding content in MTH
141: Linear Algebra from Ryerson University. We cover almost all of the sections
from the textbook; more than what the course itself covers.

The information for these notes comes from my professor’s lectures, online
resources, and the textbook A First Course in Linear Algebra originally by K.
Kuttler which is a freely available open text document. In this text, definitions
are boxed in red, theorems are boxed in blue, and any examples are boxed in
green.

This text follows the course textbook very closely, however all exposition is
my own. Many examples come directly from the textbook, however all solutions
are my own.
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1 Chapter 1: Systems of Equations

1.1 Systems of Equations, Geometry

This section introduces elementary concepts relating to systems of linear equa-
tions, and demonstrates the meaning of a solution to these systems visually.

To begin, consider the linear equation as follows as an example:

y = 2x− 1

This linear equation can be plotted on the xy-plane which visually describes the
relationship between the variables (x and y) as described by the equation.

Figure 1: Plot of y = 2x− 1 using Desmos.

The meaning of the visualization is that any point on that line is a solution
to the equation, as in if you choose some random point (a, b) on the line, then
when you take the original equation and substitute x = a and y = b the left
hand side of the equation is equal to the right hand side (LHS = RHS).

The example equation can be written in the following form using basic al-
gebra:

2x− y = 1

This is can example of a linear equation in standard form. More precisely, this
is an example of a linear equation of two variables (x and y) with coefficients of
2, −1, and a constant term of 1.

The following is also a linear equation in standard form:

3x− 2y + 3z = −3

... except this time the equation describes a plane in 3D space. As you can see
the term linear does not mean that it forms a line when graphed, it is a more
general concept that applies to higher dimensions. The following graph is a plot
of that plane.
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Figure 2: Plot of 3x− 2y + 3z = 1 using GeoGebra.

We will learn in later sections how to describe any plane as a linear equation,
for now just understand that the meaning of the plot is the same, every point on
the plane is a solution to the equation given. As in if you choose some random
point (a, b, c) that is on the plane, then when you take the original equation
and substitute x = a, y = b, and z = c then LHS = RHS.

More generally, the following is the definition of a linear equation.

A linear equation is any equation in the form:

a1x1 + a2x2 + · · ·+ anxn = b

... where each an ∈ R, b ∈ R, and each xn is a variable. We
can also call these real numbers: scalars.

Definition 1.1.1 Linear Equations

If we set n = 2, x1 = x, and x2 = y, we get something familiar, namely a line
on the xy-plane like we saw before:

a1x+ a2y = b =⇒ y = −a1
a2
x+

b

a2

Note that this is the equation for any line on the xy-plane, and so this is more
general than the specific example. This section began with a specific example
of a line, but most definitions and discussions in this text (and in this course)
are done in general terms, using things like the above definition.

A definition of a system of linear equations (SoLE) (which will be defined
formally in the next section) is a set containing two or more linear equations
with the same variables . Consider two lines on the xy-plane called `1 and `2:

`1 : a11x+ a12y = b1
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`2 : a21x+ a22y = b2

These two lines form a SoLE as they have the same variables (x and y). The
notation being used is abc which represents the coefficient (a) of the cth variable
on the bth linear equation in the system. This is common notation in this
course. The name for this would be a system of two equations in two variables.
Graphically they can be plotted on the same pair of axis, and will intersect in
one of the following three ways:

Figure 3: The 3 ways lines can collide on a 2D plane, and their respective
number of solutions (From course textbook).

Graphically, a solution to a SoLE is the point (or set of points) where the lines
intersect. Take the first instance for example, here the lines intersect at a unique
point and so the system has one unique solution. Then take the second instance,
here the lines are parallel and so they do not intersect, this means the system
has no solutions. Finally consider the third instance, here the lines overlap each
other as they are the same lines, for this reason the system has infinitely many
solutions as the lines intersect at every point on either line (since they are the
same line).

Generally, any system of linear equations will have one solution, no solutions,
or infinitely many solutions. The definitions for these concepts will be formalized
in the following section, for now we just aim to get a graphical understanding.
Visualizing concepts in Linear Algebra is a very crucial part of the learning
process, especially in this course, and so extra care will be taken in this text to
emphasize that whenever possible.

Carrying on, consider now adding a third line to the plot, call it `3, as in
our system is now:

`1 : a11x+ a12y = b1

`2 : a21x+ a22y = b2

`3 : a31x+ a32y = b3

Given that the first two lines have at least one solution, there are essentially
two ways the third line can be incorporated in the system to form a solution:
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Figure 4: The 2 ways 3 different lines can collide on a 2D plane starting with a
unique solution, and their respective new number of solutions (From course

textbook).

It is of course possible for `3 to be equal to either of the other lines, in this
case there is still just one solution as there is only one point where all 3 lines
intersect (it will be the same as the solution to the first two equations).

If you begin with a system that has no solutions, adding a third equation
(green line in the following figure) will never introduce a solution.

Figure 5: The 3 ways a system of 3 equations can have no solutions using
Desmos.

In all of the above cases, the system of 3 equations has no solutions, as there
is no unique point where the three lines intersect.

The following is an important remark: Including more equations never in-
creases the number of solutions of a SoLE.

Now let’s shift our focus from lines to planes, before we move onto the next
section where we will have a more analytical approach to defining and solving
these systems.

Given some system of two equations in three variables defined as follows (by
convention π is used to identify a plane just like ` was used for lines. In this
context π has nothing to do with the number 3.14159 . . . ):

π1 : a11x+ a12y + a13z = b1

π2 : a21x+ a22y + a23z = b2

There are three ways these two planes could intersect:

Figure 6: The 3 ways 2 planes can intersect using GeoGebra.
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In this first case, the planes intersect on a line, and so there are infinite
solutions to this system, any point on that line. Importantly note that while
the planes appear to end in the images, that is only for comprehension, in
reality the planes extend forever. In the second case, the planes do not intersect
as they are parallel, here there are no solutions. In the third case, the planes are
co-incident meaning they are the same plane, here there are infinite solutions.

Finally, let’s consider a system of 3 planes, which would be called a system
of 3 equations in 3 variables. There are again essentially 3 ways the planes can
intersect, as follows:

Figure 7: The 3 ways 3 planes can intersect using GeoGebra.

In the first case, the 3 planes intersect at a point, and so the system has a
unique solution. In the second case all 3 planes intersect on a line, and so the
system has infinite solutions. Finally in the third case the planes do not all
intersect at any point and so the system has no solutions.

Before we move onto the next section here is one small topic I am choosing
to cover now rather than later. This course uses the concept of Rn very often.
To understand what this is, consider first the real number line. You could think
of this line as a set of numbers, namely the set of all real numbers assuming the
line goes infinitely in each direction. Mathematicians call this R. Now consider
a 2D plane, this plane is also a set, namely the set of all pairs of points (x, y)
of which individually each x ∈ R and y ∈ R (note that ∈ can be read as ”in”).
This would be called R2. This extends to as many dimensions as you’d like. R40

is the set of all points (x1, x2, · · ·x40) of which individually each xi ∈ R for each
1 ≤ i ≤ 40. You will become very comfortable with this notation throughout
the course, and Rn will be formally defined in Chapter 4. For now when I say
Rn you should imagine n-dimensional space.

Bouncing off this last point we can now define lines and planes more precisely.

In R2 each linear equation represents a line.
In R3 each linear equation represents a plane.
In Rn each linear equation represents an unbounded flat
object called a hyperplane which is (n− 1)-dimensional.

Definition 1.1.2 Lines, Planes, and Hyperplanes

We will spend a lot of time discussing things like hyperplanes in Chapter 4, for
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now just keep it at the back of your mind.
This essentially concludes the content in this section of the course. I would

just like to note here that much of linear algebra concerns itself with finding
solutions to these systems of linear equations, however this mathematical ex-
ploration will bring you much further than you would imagine it could. Linear
Algebra is a huge field of math and it has deep reaching roots into many other
related fields.

1.2 Systems of Equations, Algebraic Procedures

This section of the course covers a rigorous introduction to solving these systems
of linear equations of any size, and comprehending the meaning of the solutions,
analytically. By the end of this chapter you will be able to solve a system of
any number of equations in any number of variables. This section is broken up
into 4 sub-sub-sections.

Before we begin however, we must formally define a few terms used beginning
with the formal definition of a system of linear equations:

A system of linear equations (SoLE) is a list of equations in
the form:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

... where each aij ∈ R and each bj ∈ R. You would call this
a system of m equations in n variables.

Definition 1.2.1 Systems of Linear Equations
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A system of linear equations is homogenous if each bj = 0,
as in:

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...

am1x1 + am2x2 + · · ·+ amnxn = 0

... where each aij ∈ R.

Definition 1.2.2 Homogenous Systems of Equations

Suppose we have a SoLE of m equations in n variables, say
that the real numbers c1, c2, . . . cn are solutions to the SoLE
if they make all the equations true simultanously when you
sub in x1 = c1, x2 = c2, · · ·xn = cn. The solution set of a
SoLE is the set of all groups of cn.

Definition 1.2.3 Solution Set of a SoLE

Recall that visually the solution to a SoLE was where the lines/planes/hyper-
planes intersected. Algebraically the solution to a SoLE is the values that can
be substituted in for each variable (as in x, y, and z) that make each equation
in the system true at the same time. This is a different perspective on the same
concept. Recall that if you plug in a point on a plane into the equation of the
plane, then the equation is true. In that sense we can connect the ideas of
intersecting planes (or lines or hyperplanes) with this algebraic definition as the
intersection points are points that are shared between all the equations in the
system (if it is a solution).

Say a SoLE is consistent if the solution set is not empty, as
in there is at least one solution to the system. Say a SoLE
is inconsistent if there is no solution.

Definition 1.2.4 Consistent and Inconsistent Systems

1.2.1 Elementary Operations

The elementary operations used in Linear Algebra form the basis for almost
the entirety of the course, for this reason extra care will be taken to define the
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elementary operation and to prove them to you to a degree usually not done in
the course.

Elementary operations are any of the three following op-
erations that can be applied to a system of linear equations:

1. Interchange the order in which the equations are
listed.

2. Multiply any equation by a nonzero number.

3. Replace any equation with itself added to a multiple
of another equation.

Definition 1.2.5 Elementary Operations

What’s so special about these operations? You could also add 3 to the left and
right side of any of the equations, couldn’t you? Yes you could, but that would
change the solution of the SoLE.

The reason these elementary operations are useful are because they do not
change the solution set of the SoLE. This idea forms the basis of the course.
The following theorem explicitly states this idea using a system of two equations,
however the idea applies to any number of equations.
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Suppose you have the following system of linear equations
in n variables (for simplicity E1 and E2 are used to descibe
the non-constant part of the linear equations):

E1 = a11x1 + a12x2 + · · ·+ a1nxn = b1

E2 = a21x1 + a22x2 + · · ·+ a2nxn = b2

This system has some solution set S. Then the following
systems also have a solution set of S:

1.
E2 = b2

E1 = b1

2.
E1 = b1

k(E2) = k(b2)

... for some non-zero scalar k.

3.
E1 = b1

E2 + kE1 = b2 + kb1

... for any scalar k.

Theorem 1.2.1 Elementary Operations and Solutions

We will take the time to provide deep intuition for this theorem in this text, as I
believe it is necessary to fully believe in what we are going to use as foundation.
Before that, lets do a through example to understand what it means to use the
operations.

Suppose we have the following SoLE:

x+ 3y + 6z = 25

2x+ 7y + 14z = 58

2y + 5z = 19

Find the solution to this SoLE by using each of the three
Elementary Operations.

Example 1.2.1 Elementary Operations
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To begin this problem, which will be described in detail, let us visualize the
problem by looking at a plot of the three planes:

Figure 8: The 3 planes in the above example and their point of intersection
using GeoGebra.

Now let’s take a moment to consider what happens when we do each of the
elementary row operations. Then lets combine them to find the solution (note
that this system has a unique solution at the point in the graph above).

The first elementary row operation changing the order of the equations may
seem useless, however it will prove to be useful to know later in this chapter.
We can see this elementary row operation in action:

R1 m R2

2x+ 7y + 14z = 58

x+ 3y + 6z = 25

2y + 5z = 19

Notice the notation used: m means switch the positions of the equations on
either side of it. The letter R is used to mean row which can essentially be used
interchangeably with the word equation. Unsurprisingly the graph of this new
system is unchanged when compared to the original.

Now let’s consider what happens when we do the second elementary row
operation. This operation entails multiplying both sides of one equation by
some non-zero scalar. For the sake of example, let’s say we want to multiply the
third equation by 2, we would get the following system (applying this operation
to the original system in the example):

2R3
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2x+ 7y + 14z = 58

x+ 3y + 6z = 25

4y + 10z = 38

It may come as a surprise to hear that this operation also does not change the
graph of the planes in figure 8. Since it doesn’t change the graph, it should
be reasonable to say that this operation does not change the solution set. But
why does this operation not change the graph of the planes? Consider first an
algebraic explanation.

Given the following equation:

x+ 2 = 4

It should be evident that the solution to this equation is x = 2. Consider then
the related equation:

2(x+ 2) = 2(4)

The solution to this equation is still x = 2. Multiplying by a scalar does not
change the solution of an equation with a single variable, but does it change
something more complex, say for example a line?

Take the following line for example:

y = 2x+ 4

... this line has a slope of 2 and a y-intercept of 4, this means the rise
run = 2

1 Now
consider the following line:

2(y) = 2(2x+ 4) =⇒ y =
4

2
x+ 4

This new line is notably still the same line, with the same slope and intercept.
The new slope however is written in the form 4

2 instead of 2
1 which has the

effect of stretching out our line by a factor of 2. It’s a different line, but it has
been transformed in a way that made it appear to not change. We will discuss
transformations in detail in Chapter 5.

In the exact same sense, when we multiply a plane by some constant k, we
are simply stretching out all of the points on the plane by that same factor
(imagine spinning an infinitely thin pizza dough with infinite area), and so the
effect is to not change any of the points on the graph, and most importantly it
does not change the position of the solution.

Finally, let’s now consider the effect of the third elementary row operation.
This operation entails replacing an equation with itself added to some multiple
of another equation in the system. For this example, say we want to replace the
second equation with itself plus −2 times the third equation, we would get the
following system (note that in Figure 8 the red plane is R2):

R2 → R2 + (−2)R3
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x+ 3y + 6z = 25

2x+ 7y + (−2 · 2)y + 14z + (−2 · 5)z = 58 + (2 · 19)

2y + 5z = 19

Simplify

x+ 3y + 6z = 25

2x+ 3y + 4z = 20

2y + 5z = 19

Plotting this new set of planes we get the following graph:

Figure 9: The 3 planes in the above example and their point of intersection
after an elementary row operation of type 3 using GeoGebra.

There are important features of this plot, the red plane (R2) has changed to
a new plane, the other two planes did not change, and the new plane (R2)
still passes through the point which is the solution to the original system of
equations.

When we do the elementary operation, our goal is not to find the solution to
the system without changing the system, our goal is to simply find the solution.
For this reason, even though the third elementary operation changes one of the
planes, the only thing that matters is that it does not change the solution to
the system.

Naturally the next question is: ”Why doesn’t it change the solution to the
system?” Let’s try to reason it out. Our goal is to show that if we have solutions
to a system like:

E1 = b1
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E2 = b2

Then the solutions to this system are the same as the solutions to the following:

E1 = b1

E2 + kE1 = b2 + kb1

Recall now that a solution to any one of the equations would make the En equal
to it’s respective bn. This means that after plugging in a solution to the original
system we would have:

b1 = b1

b2 = b2

Say we have some solution set S to our original system, as in when you plug it
into our original system it makes E1 → b1 and E2 → b2. Then we have to show
that this same solution makes E1 → b1 and E2 + kE1 → b1 + kb2. The first of
these is easy to prove, by the definition of the solution E1 → b1 when any of the
solutions in the solution set is applied. The next part (that E2+kE1 → b1+kb2
when a solution from the solution set is applied) we can show is true since we
know that when you apply a solution from the solution set E1 → b1 and E2 → b2
which means that:

E1 = b1

E2 + kE1 = b2 + kb1

... becomes:
b1 = b1

b2 + kb1 = b2 + kb1

... when you apply a solution from the solution set, which is obviously always
true for any k and any two linear equations E1 and E2.

This final point is a little harder to reason so if you’re having trouble un-
derstanding then read it over a few times and try to understand each line. This
extends very easily to systems of m equations (the system is already in n un-
knowns), as really only the line that is being replaced needs to be shown to not
change the solution set.

Now that we have hopefully proved to you that all of the three elementary
operations do not change the solution set, we can use the elementary operations
to solve the system. We can effectively use the operations to eliminate variables
from one of the equations to a point where we can just solve for a variable, and
then back substitute to solve for the rest of the variables. Here is the process in
detail:

Original System

x+ 3y + 6z = 25

2x+ 7y + 14z = 58

2y + 5z = 19

15



R2 → R2 + (−2)R1

This step eliminates the x term in the second equation.

x+ 3y + 6z = 25

2x+ (−2 · 1)x+ 7y + (−2 · 3)y + 14z + (−2 · 6)z = 58 + (−2 · 25)

2y + 5z = 19

Simplify

x+ 3y + 6z = 25

y + 2z = 8

2y + 5z = 19

R3 → R3 + (−2)R2

This step eliminates the y term in the third equation.

x+ 3y + 6z = 25

y + 2z = 8

(−2 · 0)x+ 2y + (−2 · 1)y + 5z + (−2 · 2) = 19 + (−2 · 8)

Simplify

x+ 3y + 6z = 25

y + 2z = 8

z = 3

We have now learned that in the solution to our system z = 3, we can now
substitute this value into the first and second equations:

x+ 3y + 6(3) = 25

y + 2(3) = 8

z = 3

Simplify

x+ 3y = 7

y = 2

z = 3
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We have now learned that in the solution to our system y = 2, we can now
substitute this value back into our first equation:

x+ 3(2) = 7

y = 2

z = 3

Simplify

x = 1

y = 2

z = 3

Finally we have now learned that in the solution to our system x = 1, we now
know that the solution to the system is x = 1, y = 2, z = 3.

This process is known as elimination method, and then back substitution.
The back substitution part is when you know one of the components to the
solution, and then you use that to go back and fill in earlier equations.

Understanding the process of this solution is crucial, however actually prac-
tising solving systems like this is not important. This is because the next subsec-
tion will discuss Gaussian Elimination which is a form of the elimination method
that is much more structured and algorithmic. Nevertheless understanding this
whole subsection will let you easily pick up what is to come.

1.2.2 Gaussian Elimination

In this section we formulate a systematic method to solve a system of m equa-
tions in n that is less cumbersome than the standard elimination method. To
be clear, the standard elimination method will always work, small changes in
perspective can make the whole process a lot easier. We will also address what
happens if you try to solve for a solution to a system that has either infinite
solutions or no solutions, which is something we glossed over in the last section.

The essence of this method, called Gaussian-Elimination, is that we can
choose to write the following system (for example):

x+ 3y + 6z = 25

2x+ 7y + 14z = 58

2y + 5z = 19

As: 1 3 6 25
2 7 14 58
0 2 5 19
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This is called the augmented-matrix of the SoLE. Each row corresponds to an
equation in the SoLE. The left side of the bar is called the coefficient-matrix,
and the right side is called the constants column. Notice that since we have
three variables, on each row there are three numbers to the left of the bar.
This includes the last row, which corresponds to the last equation in which x is
missing. This is represented as a 0 in the matrix.

This may be a seemingly useless change of notation, however as we explore
more concepts in this course (especially Chapter 2 and Chapter 5 ) you will see
that this change sheds light on a whole new way of thinking about more than
just SoLEs.

Before we move on, you may be wondering what is a matrix? While the
entirety of Chapter 2 is dedicated to working with matrices, the general idea is
that a matrix is an ordered form of a list of numbers. The numbers are ordered
into rows and columns, and the number of those are called the dimensions of
the matrix. In general a m by n matrix has m rows and n columns. The
first row is the top one, and the first column is the leftmost one. Again, we
will spend the entirety of the next chapter talking about matrices, so for now
just focus on augmented-matrices. The following is the formal definition of an
augmented-matrix :

Given the SoLE:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

The augmented matrix of the system is:
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
...

am1 am2 · · · amn bm



Definition 1.2.6 Augmented Matrix

The elementary operations can be applied to an augmented matrix, it is then
called the elementary row operations, however as the matrix always has a direct
correspondence to the original SoLE the operations are really the same and all
reasoning we have developed for them are equivalent.
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Elementary row operations are any of the three follow-
ing operations that can be applied to an augmented matrix:

1. Switch two rows.

2. Multiply a row by a non-zero number.

3. Replace a row by any multiple of another row added
to it.

Definition 1.2.7 Elementary Row Operations

Evidently, these are almost identical to the elementary operations. Let’s solve
a SoLE using an augmented matrix.

Suppose we have the following SoLE:

x− 2y + z = 0

2x+ y − 3z = 5

4x− 7y + z = −1

Find the solution to this SoLE by converting it to an aug-
mented matrix.

Example 1.2.2 Augmented Matrix

Right away let’s convert this SoLE to augmented matrix form:1 −2 1 0
2 1 −3 5
4 −7 1 −1


... and then use row operations to solve:

R2 → R2 − 2R11 −2 1 0
0 5 −5 5
4 −7 1 −1


R3 → R3 − 4R11 −2 1 0
0 5 −5 5
0 1 −3 −1
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R2 m R31 −2 1 0
0 1 −3 −1
0 5 −5 5


R3 → R3 − 5R21 −2 1 0
0 1 −3 −1
0 0 10 10


1

10
R31 −2 1 0

0 1 −3 −1
0 0 1 1


We can now convert this back in to equation form:

x− 2y + z = 0

y − 3z = −1

z = 1

From here we can simply back substitute since we know z = 1, as in:

x− 2y = −1

y = 2

z = 1

... and again since we know y = 2:

x = 3

y = 2

z = 1

This is the process by which most SoLEs are solved. The exact choices of steps
used may have seemed to come out of no where, when in reality there were
exactly following a process called Gaussian Elimination, which is a algorithm
to solve any SoLE. Gaussian Elimination takes in an augmented matrix, and
outputs the matrix in what is called row-echelon form (REF), which is the
form of the augmented matrix right before I switched the SoLE back to equa-
tions, or formally that is (quickly note that leading entry of a row is the first
non-zero value in that row from the left):
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An augmented matrix is in row-echelon form if:
� All nonzero rows are above any all-zero rows.

� Each leading entry of a row is in a column to the right
of the leading entries of all rows above it.

� Each leading entry of a row is equal to 1.

Definition 1.2.8 Row-Echelon Form (REF)

The following augmented matrices are in REF:

The following augmented matrices are not in REF:

Finally we are ready for one of the two main algorithms for solving SoLEs:
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Begin with an augmented matrix:
1. Starting from the left, find the first non-zero column.

2. If necessary, switch rows so that the top entry of the
column is non-zero. Call that entry the pivot position.

3. Use row operations to make the entries below the pivot
position all equal to 0.

4. Completely ignoring the row which contains your pivot
position, repeat the process for the remaining rows.

5. Divide each non-zero row by the value of the leading
entry. The matrix will now be in row-echelon form.

Definition 1.2.9 Gaussian Elimination

Go back to the last example and see how we used Gaussian Elimination to solve
that problem.

There is however a second algorithm, which is almost identical to the Gaus-
sian Elimination algorithm, and it is called Gauss-Jordan Elimination.

To understand this second algorithm, first lets take a look at the REF form
of the augmented matrix from the last example:1 −2 1 0

0 1 −3 −1
0 0 1 1


We could continue doing row operations on this augmented matrix to get it in
a new form that would directly give us all three components instead of needing
to do back substitution. The process is as follows:

R2 → R2 + 3R31 −2 1 0
0 1 0 2
0 0 1 1


R1 → R1 −R31 −2 0 −1
0 1 0 2
0 0 1 1


R1 → R1 + 2R21 0 0 3

0 1 0 2
0 0 1 1
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This augmented matrix is in reduced row echelon form (RREF). From here,
you can essentially just read off the solutions by converting it back to equation
form:

x = 3

y = 2

z = 1

No back substitution was needed here, that is the benefit of reducing an
augmented matrix to RREF.

An augmented matrix is in row-echelon form if:
� All nonzero rows are above any all-zero rows.

� Each leading entry of a row is in a column to the right
of the leading entries of all rows above it.

� Each leading entry of a row is equal to 1.

� All entries in a column above and below a leading
entry are zero.

Definition 1.2.10 Reduced Row-Echelon Form (REF)

This definition of RREF is almost identical to the definition of REF but with
an added point. The following matrices are in RREF:

Now that we have defined RREF, Gauss-Jordan Elimination is the second al-
gorithm which takes in an augmented matrix and returns that matrix in RREF
form. Note that it is almost identical to Gaussian Elimination except for the
addition of the last line:
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Begin with an augmented matrix:
1. Starting from the left, find the first non-zero column.

2. If necessary, switch rows so that the top entry of the
column is non-zero. Call that entry the pivot position.

3. Use row operations to make the entries below the pivot
position all equal to 0.

4. Completely ignoring the row which contains your pivot
position, repeat the process for the remaining rows.

5. Divide each non-zero row by the value of the leading
entry. The matrix will now be in row-echelon form.

6. Moving from right to left, use row operations to create
zeros in the entires above all the leading entries. The
matrix will now be in reduced row-echelon form.

Definition 1.2.11 Gauss-Jordan Elimination

From now on, we will do Gauss-Jordan Elimination when solving a SoLE since
RREF is more useful than REF.

For a quick recap:

Gaussian Elimination

Augmented Matrix→ REF

Gauss-Jordan Elimination

Augmented Matrix→ RREF

We will now discuss what happens when you try to solve a SoLE which has
either no solutions or infinite solutions. Beginning with no solutions, let’s take
a look at the following example:
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Suppose we have the following SoLE:

2x+ 4y − 3z = −1

5x+ 10y − 7z = −2

3x+ 6y + 5z = 9

Find the solution(s) to this SoLE if it has any.

Example 1.2.3 SoLE with no Solutions

Let’s begin by graphing the planes so you can be convinced it has no solutions:

Figure 10: The system of 3 equations in 3 unknowns that has no solutions.

Let’s solve this SoLE using Gaussian/Gauss-Jordan Elimination, and see what
happens: 2 4 −3 −1

5 10 −7 −2
3 6 5 9


...1 2 − 3
2 − 1

2
0 0 1 1
0 0 0 20


There is a problem with the last row of this REF augmented matrix, if you were
to convert it back to equation form you would have:

0x+ 0y + 0z = 20 =⇒ 0 = 20

... which is never true, and so the system is inconsistent, meaning it has no
solutions.
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Generally if you see a row like the following while doing Gaussian/Gauss-
Jordan Elimination: [

0 0 · · · 0 a
]

for some a ∈ R

... then we know the system is inconsistent.
Let’s now look at a system that has infinite solutions, as in the following exam-
ple:

Suppose we have the following SoLE:

3x− y − 5z = 9

y − 10z = 0

−2x+ y = −6

Find the solution(s) to this SoLE if it has any.

Example 1.2.4 SoLE with infinite Solutions

Let’s begin by graphing the planes so you can be convinced it has infinite solu-
tions:

Figure 11: The system of 3 equations in 3 unknowns that has infinite solutions.

Let’s solve this SoLE using Gaussian/Gauss-Jordan Elimination, and see what
happens:  3 −1 −5 9

0 1 −10 0
−2 1 0 −6


...
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1 0 −5 3
0 1 −10 0
0 0 0 0


This matrix has a column which does not contain a leading entry, this means
that the variable which corresponds to that column (z) is called a free variable
and can take on any value (which is where the infinite solutions come from).
To understand what this means better, look at the equation from of the last
augmented matrix:

x− 5z = 3

y − 10z = 0

0x+ 0y + 0z = 0

That last row is true regardless of any values given to it, this is what leads to
the infinite solutions. These equations can be rewritten as:

x = 3 + 5z

y = 10z

As you can see z has no restriction, as in it can take on the value of any t ∈ R,
for this reason lets set z = t. Which gives us our final solution set of:

x = 3 + 5t

y = 10t

z = t

... for any t ∈ R. This is what is meant by z is a free variable, also called a
parameter. It is just as possible for a system to have any number of free variables
in its solution set. We will discuss more in Chapter 4 what is the geometric
meaning of these free variables, but for now they are just an algebraic tool to
solve these systems. To get any particular solution to the system, pick some t,
for example t = 0, which would give you the particular solution:

x = 3

y = 0

z = 0

In this last example, x and y are basic variables, and z is a free variable.
The solutions to this system could also be written in the following form using

vector notation (something we will define in detail in the following chapters):xy
z

 =

3
0
0

+ t

 5
10
1
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Take a moment to process this notation, notice that the nth element of each
vector makes up the nth equation in the solution. The left hand side of the
equation is just a vector containing our variables. The first vector on the right
is the constants column from our RREF matrix, and the last vector in the
equation is what is related to the free variable, and it is called the system’s basic
solution, a system can have a whole list of basic solutions usually notated Xn.

In general, any system that has a row of entirely zeros in its RREF form has
infinite solutions.

Using all the skills developed up to this point, you are now able to solve a
system of m equations in n unknowns.

1.2.3 The Uniqueness of RREF

This sub-sub-section just contains two theorems relating to solving SoLEs, all
of which are important to understand.

If A and B are augmented matrcies, and you can begin
with A, apply the elementary row operations and end with
B, then the solutions of system A and B are the same, and
vice-versa. Call A and B equivalent.

Theorem 1.2.2 Equivalent Augmented Matrices

Every matrix A is equivlent to a unique matrix B in RREF.

Theorem 1.2.3 Uniqueness of RREF

What this means is that regardless of what order of row operations you perform
on a system, you will always arrive at the same RREF form of the augmented
matrix.

1.2.4 Rank and Homogeneous Systems

This sub-sub-section discusses some concepts relating to SoLEs that help us
understand their solutions.

Recall that a homogeneous SoLE is one where all the constants are equal to
0. Every homogeneous is consistent, since x1 = x2 = · · · = xn = 0 is always
a solution to the system of n unknowns. This solution is called the trivial
solution, all other solutions are called non-trivial solutions.
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Let A be a matrix and consider any REF form of A, or the
RREF form of A. Then, the number of leading entries in
the REF is the same in all the REF forms, as well as the
RREF form, and is called the rank of A. Usually written
rank(A).

Definition 1.2.12 Rank of a Matrix

If A is an m × n matrix, rank(A) = r, and A is the coef-
ficient matrix of a homogenous SoLE, then the number of
parameters in the general solution of that system is n − r,
as in:

rank(A) + number of parameters = number of columns

Theorem 1.2.4 Rank, Parameters, and Columns

This previous theorem will show up many times in this course under many
different names, and it is a fundamental result.

What this tells us is that if the rank of the coefficient matrix is less than its
number of columns, it will have infinite solutions.

Suppose we have a SoLE with an m × n coefficient matrix
A, suppose further that the system is consistent, then the
solution is unique if and only if rank(A) = n.

Theorem 1.2.4 Rank and Unique Solutions

To understand this notion consider the following two augmented matrices in
RREF : 1 0 0 2

0 1 0 0
0 0 1 2


This system has a unique solution since its coefficient matrix has 3 columns and
also has a rank of 3.
Now consider this matrix: 1 0 1 0

0 1 −2 0
0 0 0 0


Here the system does not have a unique solution since the coefficient matrix has
3 columns, but its rank is 2.
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Suppose A is the coefficient matrix of some SoLE, and ~b is
the column matrix which holds the constants of the same
SoLE, then the system is consistent if and only if:

rank([A]) = rank([A | ~b ])

Theorem 1.2.5 Rank and Consistency

Note that ~b just means a column matrix which contains the coefficients, the
arrow on top just signifies it is a column. Take the following augmented matrix
for example: 1 2 0 0

0 0 1 −1
0 0 0 1


The rank of A is 2, but the rank of [A | ~b ] is 3 and so the system is

inconsistent.

This concludes the content in Chapter 1 of this text. You are now able to
solve a system of m equations in n unknowns, and understand its solution set.
The logic used in this chapter will be used throughout the course so spend some
time here to make sure you understand everything.

2 Chapter 2: Matrices

2.1 Matrix Arithmetic

This subsection is concerned with defining the basic arithmetic used with ma-
trices, including summation, scalar multiplication, multiplication of matrices,
and inverse matrices. The final parts of this subsection are concerned with
elementary matrices which relate this chapter back to the content in Chapter 1.
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A matrix (plr. matrices) is a 2D rectangular list of num-
bers. It has columns and rows, where each of the rows have
the same number of entries, and each column has the same
number of entries.
An m × n matrix has m rows and n columns. Each indi-
vidual entry is denoted by its ij position, as in aij (the
(i, j)-entry) is the entry that lays in the i-th row and j-th
column of a matrix A. So the general form of a matrix would
look like the following:

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


... or more succinctly, for a matrix A:

A = [aij ]

The following notation is also used for matrices: | | |
A1 A2 · · · An

| | |


... where each Aj is a column matrix.

Definition 2.1.1 Matrices

A square matrix is a matrix of size n×n, as in the number
of rows equals the number of columns.

Definition 2.1.2 Square Matrices

Square matrices end up being used more often than non-square matrices, and
have their own set of special properties which we will spend a lot of time dis-
cussing.
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A column vector (usually just called a vector) is a m× 1
column matrix, as in a vector ~v:

x1
x2
...
xm


xi is used to denote the ith element of a vector.

Definition 2.1.3 Vectors

The zero matrix (usually just denoted as 0) is the m × n
where each 0ij = 0. The size of the zero matrix can usually
be decuded from other parts of the expression. The zero
matrix is also called the additive identity.

Definition 2.1.4 The Zero Matrix

Let A = [aij ] and B = [bij ] be two m × n matrices. Then
say A = B if aij = bij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Definition 2.1.5 Equality of Matrices

For two matrices to be equal they need to have the same dimensions and the
same values in each entry.
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2.1.1 Addition of Matrices

Let A = [aij ] and B = [bij ] be two m × n matrices. Then
say A+B = C where C = [cij ] is an m× n matrix where:

cij = aij + bij

... alternatively:

(A+B)ij = (A)ij + (B)ij

... for each 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Definition 2.1.6 Addition of Matrices

To sum two matrices, they must be the same size. From there just add together
each corresponding position’s value to get the value of the resulting matrix’s
entry in that same position.

Add the following matrices:1 4 −4
5 −2 0
2 −1 −10

+

 5 −2 10
4 0 1
−3 −1 5



Example 2.1.1 Adding Matrices

Just apply Definition 2.1.4 :1 4 −4
5 −2 0
2 −1 −10

+

 5 −2 10
4 0 1
−3 −1 5



=

1 + 5 4− 2 −4 + 10
5 + 4 −2 + 0 0 + 1
2− 3 −1− 1 −10 + 5


=

 6 2 6
9 −2 1
−1 −2 −5


Addition of matrices has very similar properties to addition of regular real num-
bers, mostly because the computational process to add matrices uses exclusively
real number addition.
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Let A,B, and C be m× n matrices, then:
� Commutativity:

A+B = B +A

� Associativity:

(A+B) + C = A+ (B + C)

� Existency of an Additive Identity:

There exists some 0 such that: A+ 0 = A

� Existence of an Additive Inverse:

There exists some −A such that: A+ (−A) = 0

Theorem 2.1.1 Properties of Matrix Addition

This may be your first experience with seeing the properties of addition written
out formally, while it may seem overwhelming, these properties are very simple
to understand and are in most cases obvious. This will not always be true
however, and so it is important to formally define all the properties of the
mathematical concepts we will be working with in this course.

You may also be wondering what is meant by −A. Is this the same as
−1 × A? How do you multiply a matrix by a scalar? These questions will be
answered in the next subsection.

2.1.2 Scalar Multiplication of Matrices

Scalar multiplication of matrices is multiplying a matrix by a real number, which
effectively scales up or down the values inside the matrix.

Let A = [aij ] be an m × n matrix and k ∈ R be a scalar.
Then say kA = B where B = [bij ] is an m×n matrix where:

bij = kaij

... alternatively:
(kA)ij = k(A)ij

... for each 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Definition 2.1.7 Scalar Multiplication of Matrices
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Essentially, to scale a matrix, just multiply every entry in the matrix by that
scalar.

Find kA where:

A =

1 4 −4
5 −2 0
2 −1 −10


k = 3

Example 2.1.2 Scaling Matrices

Applying Definition 2.1.7 :

3

1 4 −4
5 −2 0
2 −1 −10



=

 3 12 −12
15 −6 0
6 −3 −30


Now let’s look at the properties of scalar multiplication of matrices:

Let A and B be m× n matrices, and k, p ∈ R then:
� Distributive Law over Matrix Addition:

k(A+B) = kA+ kB

� Distributive Law over Scalar Addition:

(k + p)A = kA+ kA

� Associative Law for Scalar Multiplication:

k(pA) = (kp)A

� Multiplicative Identity:

1A = A

Theorem 2.1.2 Properties of Matrix Scaling
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2.1.3 Multiplication of Matrices

This subsection covers multiplying matrices, to begin we learn how to multiply
a matrix by a vector, and then how to multiply a matrix by a matrix, which can
be simplified to repeated multiplication by vectors. The geometric reasoning for
this definition of matrix multiplication will be covered in detail in Chapter 5,
for now we are just trying to learn the computation.
To begin, note that matrix multiplication has an important restriction, that is
when multiplying an m×n matrix with a p×q matrix, n = p must be true. That
is the number of columns of the first matrix must be equal to the number of
rows of the second matrix. The resulting matrix will then be m× q. Succinctly:

A[m× n]B[n× p] = C[m× p]

or:
(m× n)× (n× p) = (m× p)

If two matrices pass this criteria, then say they are conformable.

Let A = [aij ] be an m × n matrix and let X be an n × 1
vector, as in:

 | | |
A1 A2 · · · An

| | |

 , X =


x1
x2
...
xn


Then AX is m× 1 and:

AX = x1

 |A1

|

+ x2

 |A2

|

+ · · ·+ xn

 |An

|


... or alternatively:

AX =

n∑
j=1

xj
 |Aj

|




Definition 2.1.8 Matrix-Vector Multiplication

Essentially, to multiply a matrix with a vector, scale each column of the ma-
trix with its corresponding entry from the vector, and then add all those scaled
columns back up into a single vector.
Very importantly, the result of a matrix-vector multiplication is always also a
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vector itself.

Find AX where:

A =

1 4 −4
5 −2 0
2 −1 −10



X =

5
0
2



Example 2.1.3 Matrix-Vector Multiplication

Applying Definition 2.1.8 :

AX =

1 4 −4
5 −2 0
2 −1 −10

5
0
2



= 5

1
5
2

+ 0

 4
−2
−1

+ 2

 −4
0
−10


= 5

1
5
2

+ 2

 −4
0
−10


Now applying Definition 2.1.7

=

 5
25
10

+

 −8
0
−20


Now applying Definition 2.1.6

=

 −3
25
−10



Before we move on to matrix-matrix multiplication, lets investigate the fol-
lowing example: [

a11 a12
a21 a22

] [
x
y

]
=

[
b1
b2

]
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Let’s multiply out the left side of this equation:

x

[
a11
a21

]
+ y

[
a12
a22

]
=

[
b1
b2

]
[
a11x+ a12y
a21x+ a22y

]
=

[
b1
b2

]
Which is equivalent to:

a11x+ a12y = b1

a21x+ a22y = b2

Evidently, this is a system of 2 equations in 2 unknowns in equation form!
Something we are very familiar with. At every point in this process the equation
was a representation of the SoLE.
The following is the Vector Form of a SoLE:

x

[
a11
a21

]
+ y

[
a12
a22

]
=

[
b1
b2

]
The following is the Matrix Form of a SoLE:[

a11 a12
a21 a22

] [
x
y

]
=

[
b1
b2

]
Also written as:

A~x = ~b

... or more generally the definition for these forms are on the next page.
We now have a new perspective on a SoLE, that is we are looking for some ~x
that when multiplied by the matrix A, you get ~b as a result. All the possible
~x that satisfy this comprise the solution set of our SoLE. While Gauss-Jordan
Elimination may still be a faster way to actually compute the solutions to these
systems, broadening our perspective will allow us to solve them in clever ways.
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Suppose we have a SoLE given by:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

... then we can express this system in vector form as
follows:

x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n

...
amn

 =


b1
b2
...
bm


... and we can express this system in matrix form as fol-
lows: 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bn


... which is also written as:

A~x = ~b

Definition 2.1.9 Matrix & Vector Form of a SoLE

Now we begin matrix-matrix multiplication with it’s definition:
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Let A be an m× n matrix and let B be an n× p matrix, in
the form:

A =

 | | |
A1 A2 · · · An

| | |

 and B =

 | | |
B1 B2 · · · Bp

| | |


... then the m× p matrix AB is defined as follows:

AB =

 | | |
AB1 AB2 · · · ABp

| | |



Definition 2.1.10 Matrix-Matrix Multiplication

Essentially, to multiply two matrices, multiply the first column of the second
matrix with the first matrix, that resulting vector is the first column of the
product, repeat for all the columns in the second matrix.

Find AB where:

A =

[
1 2 1
0 2 1

]

B =

 1 2 0
0 3 1
−2 1 1



Example 2.1.4 Matrix-Matrix Multiplication

First of all these matrices are conformable as A has 3 columns and B has 3
rows. Applying Definition 2.1.10 we get:

AB = U =

 | | |
U1 U2 U3

| | |


Where:

U1 = AB1 =

[
1 2 1
0 2 1

] 1
0
−2

 =

[
−1
−2

]

U2 = AB2 =

[
1 2 1
0 2 1

]2
3
1

 =

[
9
7

]
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U3 = AB3 =

[
1 2 1
0 2 1

]0
1
1

 =

[
3
3

]
Therefore:

AB =

[
−1 9 3
−2 7 3

]
2.1.4 The ij-th Entry of a Matrix Product

Addition and scalar multiplication were both defined in terms of their ij-th en-
try, and the same can be done for multiplication however it takes more work to
do so.
In order to derive the formula for the ij-th entry, we will use two 3 × 3 matri-
ces, however this process would work for the product of any two conformable
matrices. Consider the following product:a11 a12 a13

a21 a22 a23
a31 a32 a33

b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

u11 u12 u13
u21 u22 u23
u31 u32 u33


Let’s multiply out the left side to find an expression for any entry on the right:

U1 = AB1 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

b11b21
b31

 = b11

a11a21
a31

+ b21

a12a22
a32

+ b31

a13a23
a33



=

a11b11 + a12b21 + a13b31
a21b11 + a22b21 + a23b31
a31b11 + a32b21 + a33b31

 =

u11u21
u31



U2 = AB2 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

b12b22
b32

 = b12

a11a21
a31

+ b22

a12a22
a32

+ b32

a13a23
a33


=

a11b12 + a12b22 + a13b32
a21b12 + a22b22 + a23b32
a31b12 + a32b22 + a33b32

 =

u12u22
u32



U3 = AB3 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

b13b23
b33

 = b13

a11a21
a31

+ b23

a12a22
a32

+ b33

a13a23
a33


=

a11b13 + a12b23 + a13b33
a21b13 + a22b23 + a23b33
a31b13 + a32b23 + a33b33

 =

u13u23
u33


From this we learn the value of each entry in the product:
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a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33



=

u11 u12 u13
u21 u22 u23
u31 u32 u33


Let’s focus in on the 1, 2 entry for example:

u12 = a11b12 + a12b22 + a13b32

Notice the middle indexes of each term are just incrementing by one each time,
so:

u12 = a11b12 + a12b22 + a13b32 =

3∑
k=1

a1kbk2

... here, 3 comes from the fact that A has 3 columns, equivalently B has 3 rows.
More generally for uij in an (m× n)× (n× p) product that would be:

uij = ai1b1j + ai2b2j + · · ·+ ainbnj =

n∑
k=1

aikbkj

Let A = [aij ] be an m × n matrix and let B = [bij ] be an
n× p matrix, then AB is an m× p matrix with ij-th entry
of:

(AB)ij =

n∑
k=1

aikbki

... alternatively:

(AB)ij =
[
ai1 ai2 · · · ain

]

b1j
b2j
...
bnj



Definition 2.1.11 The ij-th Entry of a Product

Essentially, to find the ij-th entry of the product take the i-th row of the left
matrix, the j-th row of the right matrix, and then multiply the first entries, the
second entries, and so forth, and then add up all the results.
Let’s use this to actually compute an entire matrix product in the next example.
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Find AB where:

A =

1 2
3 1
2 6


B =

[
2 3 1
7 6 2

]
... using only the ij-th product.

Example 2.1.5 ij-th Entry

Applying Definition 2.1.11 :1 2
3 1
2 6

[2 3 1
7 6 2

]
=

1 · 2 + 2 · 7 1 · 3 + 2 · 6 1 · 1 + 2 · 2
3 · 2 + 1 · 7 3 · 3 + 1 · 6 3 · 1 + 1 · 2
2 · 2 + 6 · 7 2 · 3 + 6 · 6 2 · 1 + 6 · 2



=

16 15 4
13 15 5
46 42 14


2.1.5 Properties of Matrix Multiplication

One of the most important differences between matrices and regular real number
multiplication is that while xy = yx for x, y ∈ R, AB 6= BA for two matrices A
and B (note here that I could have written for A,B ∈ Mm×n as Mm×n is the
set of all m × n matrices). The geometric reasoning for this will be explored
in Chapter 5, for now just take it as a fact and try it out with some matrices.
While this is technically not a property, it is more of the absence of the property
of commutativity, I will include it in the formal properties of matrices in these
notes, as in the following theorem.
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Let A,B and C be conformable matrices, and k, p ∈ R then:
� Non-Commutativity:

AB 6= BA

Except in special cases.

� Associative Law for Multiplication:

A(BC) = (AB)C

� Distributive Law over Matrix Addition:

A(kB + pC) = kAB + pAC

(kB + pC)A = kBA+ pCA

Theorem 2.1.3 Properties of Matrix Multiplication

2.1.6 The Transpose

The transpose is another operation you can perform on a matrix that is unique
to matrices, and has its own set of properties.

Let A = [aij ] be an m × n matrix. Then AT called the
transpose of A is an n×m matrix given by:

AT = [aij ]
T = [aji]

Definition 2.1.12 The Transpose of a Matrix

Essentially, row i from A becomes column i in AT , and column j in A becomes
row j in AT . Another way to think of this is you reflect the matrix along its
main diagonal that goes from the top left to the bottom right. By this definition,
the value on the main diagonal are unaffected by the transpose.

Find AT where:

A =

[
1 2 −6
3 5 4

]
Example 2.1.6 The Transpose
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Applying Definition 2.1.12 :

[
1 2 −6
3 5 4

]T
=

 1 3
2 5
−6 4



Let A and B be conformable matrices, and k, p ∈ R then:
� Transpose of a Transpose:

(AT )T = A

� Transposition of a Product:

(AB)T = BTAT

� Transposition of a Sum:

(rA+ sB)T = rAT + sBT

Theorem 2.1.4 Properties of Transposition

Let A = [aij ] be an m×n matrix. Then say A is symmetric
if

A = AT

Definition 2.1.13 Symmetric Matrices

The following matrix is symmetric:2 1 3
1 5 −3
3 −3 7



Let A = [aij ] be an m × n matrix. Then say A is skew-
symmetric if

A = −AT

... or equivalently:
−A = AT

Definition 2.1.14 Skew-Symmetric Matrices
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The following matrix is skew-symmetric: 0 1 3
−1 0 2
−3 −2 0


2.1.7 The Identity and Inverses

The n×n identity matrix usually denoted In is the square
matrix with ones along the main diagonal, and zeros every-
where else. For example:

I3 =

1 0 0
0 1 0
0 0 1


The identity matrix is also called the multiplicative iden-
tity.

Definition 2.1.15 Identity Matrices

Let’s see what happens if we multiply by the identity matrix. First we
multiply on the right (recall that it matters what side you multiply on for
matrices) by the appropriate sized identity matrix to make them conformable.a11 a12

a21 a22
a31 a32

[1 0
0 1

]
=

1

a11a21
a31

+ 0

a12a22
a32

 0

a11a21
a31

+ 1

a12a22
a32




=

a11 a12
a21 a22
a31 a32


As a result we get our original matrix back! Let’s try to multiply now on the
other side by its appropriate identity matrix.1 0 0

0 1 0
0 0 1

a11 a12
a21 a22
a31 a32



=

a11
1

0
0

+ a21

0
1
0

+ a31

0
0
1

 a12

1
0
0

+ a22

0
1
0

+ a32

0
0
1




=

a11 a12
a21 a22
a31 a32
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We once again get our original matrix back out to us as the product. This leads
to the following theorem.

Let A = [aij ] be an m× n matrix. Then:

AIn = A and ImA = A

Theorem 2.1.5 Multiplication by In

The identity matrix works a lot like the number 1 in regular real number mul-
tiplication.
We will now discuss matrix inverses, which is essentially how you divide matri-
ces. Take the real numbers for example, consider:

2 · 1

2
= 2 · 2−1 = 1

We can say that the multiplicative inverse of 2 is 1
2 since when you multiply by

it the result is the multiplicative identity (1). By this logic, dividing by some
number is the same as multiplying by its inverse. This is how we divide with
matrices, we multiply by a matrix inverse.

Let A be an n×n matrix. A is said to have an inverse A−1

if and only if:
AA−1 = A−1A = In

... if A−1 exists, say A is invertible. Furthermore, given
that A−1 exists, there is only one such matrix which satisies
the definition for a matrix A.

Definition 2.1.16 Inverse Matrices

Importantly, only square matrices can have inverses. There are a few reasons
for this, one important one comes from Chapter 3, however just consider the
fact that the inverse must be conformable on both sides with A, this is only
possible if A is a square matrix. It is possible for non-square matrices to have
one sided inverses, as in a matrix B−1 that when multiplied by B (a non-square
matrix) one one side results in In but when multiplied on the other side is non-
conformable. These one sided inverses are not inverses, and are usually not
considered at all.
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Solve for the matrix A in:

A

[
1 1
1 2

]
=

[
3 1
−1 2

]
Given that: [

1 1
1 2

]−1
=

[
2 −1
−1 1

]

Example 2.1.7 Matrix Inverse

To solve this problem, we are going to multiply both sides of the equation by
the inverse of the matrix behind the A. Just like you would do if you were
solving 2x = 4, where you would multiply both sides by the inverse of 2. It does
matter if left multiply or right multiply, we have to multiply on the right in
order for us to get BB−1 = I2. Another important note is that not all matrices
are invertible, and just because a matrix is square does not mean it’s invertible.

A

[
1 1
1 2

] [
1 1
1 2

]−1
=

[
3 1
−1 2

] [
1 1
1 2

]−1
In this question we were given the inverse of that matrix, and so we can substi-
tute that in as follows (also note once again that BB−1 = I2):

A

[
1 0
0 1

]
=

[
3 1
−1 2

] [
2 −1
−1 1

]
The left side will always multiply out to be A, just like x ·1 will always multiply
out to be x regardless of x, and the right side just needs to be multiplied out.

A =

[
5 −2
−4 3

]
2.1.8 Finding the Inverse of a Matrix

This subsection is focused defining a method to solve for the inverse of a matrix,
as well as properties of the inverse operation and how it interacts with other
operations. I will begin this section with the definition of the procedure, and
then motivate it with an explanation entirely in the following subsection.
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Let A be an n×n matrix. To find A−1 create an augmented
matrix in the form:

[A | In]

If possible, through row operations transform the matrix to
the form:

[In | B]

If this is possible, then B = A−1, and call A invertible. If
it is not possible to transform the matrix to the final form
then A has no inverse.

Definition 2.1.17 Inverse Matrix Algorithm

Essentially, make the augmented matrix as first defined, then do Gauss-Jordan
Elimination to get the matrix into RREF form. If the RREF form of the
matrix has a row of zeros, this would mean the matrix is non-invertible. If the
RREF form of the matrix is just the identity matrix on the left, then the matrix
after the augmentation bar is the inverse you are looking for.

This is also a good time to formally try to understand what the augmentation
bar is. We used it in Chapter 1 as just a notational trick and it should be clear
that that is exactly that it is. The matrix:[

1 0 5 1
0 1 −3 1

]
... is essentially equivalent to: [

1 0 5 3
0 1 −3 2

]
By putting the augmentation bar, we are essentially denoting one side as the
left side and one side as the right side, and that’s really it. The exact meaning
of the left side and right side are defined based on context. Like how in this
algorithm the left side of the result is the identity matrix, while the right side
is some matrix B.

Once again, the reasoning for this method will be explained at the end of
the next section, for now here is an example of it in use:

Find A−1 where:

A =

1 2 2
1 0 2
3 1 −1



Example 2.1.8 Matrix Inverse
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By using the method from Definition 2.1.17 :1 2 2 1 0 0
1 0 2 0 1 0
3 1 −1 0 0 1


⇓ Through Elementary Row Operations... ⇓1 0 0 − 1

7
2
7

2
7

0 1 0 1
2 − 1

2 0
0 0 1 1

14
5
14 − 1

7


... which tells us that:

A−1 =

− 1
7

2
7

2
7

1
2 − 1

2 0
1
14

5
14 − 1

7



We can find the solutions to a SoLE using an inverse matrix. This is because
in general the matrix form of a SoLE looks like:

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bn


... which is also written as:

A~x = ~b

... multiplying on the left by A−1 we get:

A−1A~x = A−1~b

In~x = A−1~b

~x = A−1~b

Which tells us that to find our solutions to the linear system (~x) we just invert
the coefficient matrix (A−1) and multiply it on the left by the constant column

vector (~b). This is particularly useful if you need to solve the same system
multiple times changing only the constant column, in this situation you can reuse
the inverse coefficient matrix. Let’s illustrate this method with the following
example:
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Find the solution(s) to the following consistent SoLE:

x+ z = 1

x− y + z = 3

x+ y − z = 2

Example 2.1.9 Solving a SoLE Using Matrix Inverse

We can write this system in the form:

A~x = ~b1 0 1
1 −1 1
1 1 −1

xy
z

 =

1
3
2


We can then multiply on the left by the inverse of the coefficient matrix on both
sides: 1 0 1

1 −1 1
1 1 −1

−1 1 0 1
1 −1 1
1 1 −1

xy
z

 =

1 0 1
1 −1 1
1 1 −1

−1 1
3
2


xy
z

 =

1 0 1
1 −1 1
1 1 −1

−1 1
3
2


Now let’s calculate A−1 using the method described earlier in this section:1 0 1 1 0 0

1 −1 1 0 1 0
1 1 −1 0 0 1


⇓ Through Elementary Row Operations... ⇓1 0 0 0 1

2
1
2

0 1 0 1 −1 0
0 0 1 1 − 1

2 − 1
2


... which tells us that:

A−1 =

0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


So finally the can compute the following:xy

z

 =

1 0 1
1 −1 1
1 1 −1

−1 1
3
2
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xy
z

 =

0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


1

3
2


xy
z

 =

 5
2
−2
− 3

2


Therefore this system has a unique solution x = 5

2 , y = −2, z = − 3
2 .

Now consider some theorems and properties of the inverse operation:

Let A and B be n× n matrices.
� I is invertible and I−1 = I

� If A is invertible then so is A−1 and (A−1)−1 = A

� If A is invertible than so is Ak, and (Ak)−1 = (A−1)k

� If A is invertible and p is a nonzero real number, then
pA is invertible and (pA)−1 = 1

pA
−1

� If A is invertible, then AT is invertible and (AT )−1 =
(A−1)T

� If A and B are both invertible, then AB is invertible
and (AB)−1 = B−1A−1. This can be extended to the
product of n matrices, as in the next point.

� If A1, A2, · · · , Ak are invertible, then the product
A1A2 · · ·Ak is invertible and:

(A1A2 · · ·Ak)−1 = A−1k A−1k−1 · · ·A
−1
2 A−11

Theorem 2.1.6 Properties of the Matrix Inverse

Let’s take a moment to discuss the last two points in these properties. Let’s
say we have the following product:

ABC

... where A,B, and C are all n × n invertible matrices. Then we are looking
for some matrix D that will make the following two equations true:

DABC = I

52



ABCD = I

Since we now our original three equations are invertible, namely we know A and
C are invertible we can make the following changes:

DABCC−1 = IC−1

A−1ABCD = A−1I

... which simplifies to (only showing this step once):

DABIn = C−1

InBCD = A−1

... or equivalently:
DAB = C−1

BCD = A−1

We can repeat this for the other two matrices:

DABB−1 = C−1B−1

B−1BCD = B−1A−1

... which becomes:
DA = C−1B−1

CD = B−1A−1

... then one last time:
DAA−1 = C−1B−1A−1

C−1CD = C−1B−1A−1

... which finally gives us:
D = C−1B−1A−1

D = C−1B−1A−1

Evidently there is only one solution for D and this can be easily extended to a
product of n equations. Since multiplying by D on either side of ABC results
in In, by definition D = (ABC)−1.

One final note before we end this subsection is the following formula for the
inverse of a 2 × 2 matrix. The general form of this formula for n × n matrices
comes in Chapter 3 as it takes quite a bit of motivation, for now this is a
worthwhile formula to memorize:[

a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
Note that this matrix is invertible so long as ad− bc 6= 0.
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2.1.9 Elementary Matrices

This subsection connects what we were doing in Chapter 1 to the new compu-
tation and notation we know from Chapter 2.

Let E be an n × n matrix. Then say E is an elemen-
tary matrix if it is the result of applying a single row
operations to In. Performing any row operation defined by
E on some matrix A is equivalent to taking the product EA.

Let P ij denote the elementary matrix which involves
switching the ith and jth rows of In. Then P ij is also called
a permutation matrix and:

P ijA = B

where B is obtained from A by switching the ith and jth

rows.

Let E(k, i) denote the elementary matrix correspond-
ing to the row operation in which the ith row of In is
multiplied by the nonzero scalar k. Then

E(k, i)A = B

where B is obtained from A by multiplying the ith row of
A by k.

Let E(k × i + j) denote the elementary matrix ob-
tained from In by replacing the jth row with itself plus k
times the ith row. Then

E(k × i+ j)A = B

where B is obtained from A by replacing the jth for with
itself plus k times the ith row.

Definition 2.1.18 Elementary Matrices

Let’s look at some examples of elementary matrices (for n = 3):

P 23 =

1 0 0
0 0 1
0 1 0
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E(3, 2) =

1 0 0
0 3 0
0 0 1


E(−2× 3 + 1) =

1 0 −2
0 1 0
0 0 1


Very importantly, doing a row operation on a matrix is the same as multi-

plying by the corresponding elementary matrix. Look at the following for an
example let:

A =

3 2 9
0 1 −1
5 0 2


Recall E(−2×3+1) is the elementary matrix where the first row is replaced by
−2 times the third row, this is a type 3 row operation. Doing this row operation
on A which I will call A′ would give us:

A′ =

−7 2 5
0 1 −1
5 0 2


So let’s verify that:

E(−2× 3 + 1)A = A′1 0 −2
0 1 0
0 0 1

3 2 9
0 1 −1
5 0 2

 = A′

−7 2 5
0 1 −1
5 0 2

 = A′

Which is true, so we can see that left-multiplying by an elementary matrix has
the same affect on the matrix it is being multiplied with as doing the corre-
sponding row operation.

Another important fact is about the inverses of elementary matrices:

Every elementary matrix (E) is invertible and its inverse
(E−1) is also an elementary matrix obtained by doing the
elementary row operation which undoes the effect of E.

Theorem 2.1.7 Elementary Matrix Inverses

The following discussion will allow us to use elementary matrices to help our
understanding of linear algebra as a whole.
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Let A be and m × n matrix and let B be the RREF form
of A. Then we can say B = UA where U is the product of
all the elementary matrices representing the row operations
done to A to obtain B.

Theorem 2.1.8 B = UA Form

This form encodes all the information about the original matrix A, what it’s
RREF form looks like in B, and all the row operations needed to get to the
RREF form in U . One way to think about this form is instead of B = UA, is
to think of an equivalent expression:

A = U−1B

This states that a matrix A can be written (essentially factored into) its RREF
form B and the inverse of all the steps it takes to get it into that RREF form
U−1. In this form the matrix U is really best thought of as a whole string of
elementary matrices multiplying together. Let’s take a look at the following
example to try to understand this form of a matrix.

For the following matrix A, write A in the form B = UA:

A =

1 2 1
2 7 5
3 0 −3



Example 2.1.10 B = UA form of a Matrix

To do this, we need to keep track of the row operations required to bring
this matrix (A) to its RREF form (B), then at the end convert all of those row
operations into elementary matrices, and then compute their ordered product
(U). For the sake of clarity I will go through all the steps of Gauss-Jordan
Elimination:

A =

1 2 1
2 7 5
3 0 −3


R2 → R2 − 2R11 2 1

0 3 3
3 0 −3


R3 → R3 − 3R1
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1 2 1
0 3 3
0 −6 −6


(

1

3

)
R2

1 2 1
0 1 1
0 −6 −6


R1 → R1 − 2R21 0 −1

0 1 1
0 −6 −6


R3 → R3 + 6R2

B =

1 0 −1
0 1 1
0 0 0


Now that we have the matrix in RREF form, the following product would get
us U :

U = E(6× 2 + 3) E(−2× 2 + 1) E

(
1

3
, 2

)
E(−3× 1 + 3) E(−2× 1 + 2)

Which is just the list of row operations we did in the form of elementary matrices,
with the first one on the far right since it is the one we want to apply first. We
can write out all these matrices:

U =

1 0 0
0 1 0
0 6 1

1 −2 0
0 1 0
0 0 1


1 0 0

0 1
3 0

0 0 1


 1 0 0

0 1 0
−3 0 1

 1 0 0
−2 1 0
0 0 1



U =

 7
3 − 2

3 0
− 2

3
1
3 0

−7 2 1


We can verify that this is truly the matrix U in B = UA my left-multiplying A
by it and checking if we get the RREF form of A as a product.

B = UA1 0 −1
0 1 1
0 0 0

 =

 7
3 − 2

3 0
− 2

3
1
3 0

−7 2 1


1 2 1

2 7 5
3 0 −3
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=

1 0 −1
0 1 1
0 0 0


We can see that our solution is correct and so:

B =

1 0 −1
0 1 1
0 0 0



U =

 7
3 − 2

3 0
− 2

3
1
3 0

−7 2 1


A =

1 2 1
2 7 5
3 0 −3


This process is fairly long and tedious, and can be simplified. Essentially it
would be nice if at the same time as we did the row operations to the original
matrix to get it into RREF we could automatically keep an updated product of
elementary matrices to get U . We can achieve this by augmenting the matrix
A with In, written as [A | In]. When we do a elementary row operation to this
matrix it essentially does it to both A and In. We can use operations to reduce
A to it’s RREF form (B), and then after all those operations the matrix In will
effectively be the collection of all row operation that it took to get from A to
be B, this is what we want in U . To summarize:

[A | In]→ [B | U ]

Notice that this process is very similar to Definition 2.1.17: Inverse Matrix
Algorithm. The difference in that procedure is that we change the name of U to
A−1, assuming that the RREF form of A (B) is In (the identity matrix). This
works because of the following:

B = UA

If A is invertible, then B = In:

In = UA

U−1In = A

U−1 = A

(U−1)−1 = A−1

By property 2 of Theorem 2.1.6 :

U = A−1
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Which tells us that if B = In, then A−1 = U which is why we use the same
process to find the inverse of a matrix. If B 6= In, then A is not invertible.

This particularly works for finding the inverse because in making the state-
ment:

DA = I

... we know that at least by multiplying on the left, D acts as A−1 (more on this
soon). Essentially we want to know what string of elementary row operations
will get A to its RREF form (B). This sounds like the B = UA form but in
this particular case B = In and U = A−1 by definition since left-multiplying
A by it results in In. Importantly by definition the inverse needs to be able to
be multiplied on either side and result in In to be the inverse matrix, however
we don’t have to check that the other side’s product results in In due to the
following theorem:

Suppose A and B are square n×n matrices such that AB =
In. Then it follows that BA = In.

Theorem 2.1.9 Uniqueness of the Inverse

This theorem essentially states that if you find a matrix that acts as the inverse
on one side, and both matrices are square, then you do not need to check the
other side’s product to verify it also results in In, it will with certainty.

This concludes this section of Chapter 2, you can now perform most opera-
tions on matrices of any size, and compute things like the inverse and B = UA
form.

2.2 LU Factorization

This section introduces the factorization of a matrix into its LU form. Not
every matrix A has a factorization in this form, but when it does, the system
A~x = ~b can be solved using the LU factorization in half as many steps as Gauss-
Jordan Elimination. LU factorization is the most common way that computers
solve SoLEs. Before we define the factors LU , we need to define two types of
matrices:

A square matrix is called lower triangular if all the entries
above the main diagonal are 0, as in the only non-zero entries
are on the lower half of the matrix including the diagonal.
A square matrix is called upper triangular if all the entries
below the main diagonal are 0, as in the only non-zero entries
are on the upper half of the matrix including the diagonal.

Definition 2.2.1 Triangular Matrices
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An m×n matrix A has an LU factorization if the REF form
of A can be acheived from A without switching any rows.
The LU factorization of a matrix A involves writing the
given matrix as the product of a lower triangular matrix
(L) which has a main diagonal consisting entirely of ones,
and an upper triangular matrix (U). The output of LU
factorization is the following equation:

A = LU

Definition 2.2.2 LU Factorization

As in for some 2 × 2 matrix for example, we are looking to see if we can write
it in the form: [

1 0
x 1

] [
a b
0 c

]
... which would be it’s respective LU form. This idea of course extends to an
n×n matrix. You can effectively do this factorization by taking the product of
the general form of the LU factorization,as in:[

1 0
x 1

] [
a b
0 c

]
=

[
a b
xa xb+ c

]
= LU

... and setting this equal to the given matrix, let’s use a general 2× 2 matrix:

M =

[
m1 m2

m3 m4

]
... from here we can match terms:[

m1 m2

m3 m4

]
=

[
a b
xa xb+ c

]
Matching the corresponding elements we get the following:

m1 = a

m2 = b

m3 = xa

m4 = xb+ c

... which is a system of equations in 5 variables (remember the mi values are
all constants). You can then solve this system for the values we need using
substitution, or any other technique (note this is not a SoLE).

Now this process is lengthy for any matrix with dimensions bigger than 2×2
and also ends in a non-linear system. For this reason we almost never find the
LU factorization by using this method, instead we use the Multiplier Method.
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To begin deriving the multiplier method, note that the REF form of any
matrix A is already upper triangular, and so naturally it will be the U in the
LU factorization. Say you have some matrix A then:

A = IA

Here, I can take on whatever size it needs to be conformable with the product.
Then the series of k elementary operations (E1E2 · · ·Ek) needed to get from A
to its REF form can be written in the from:

E = E1E2 · · ·Ek

... and we know that:
EA = B

... where B is the REF form of A. Except in this factorization we do not
particularly need the REF form, we want almost REF form except you do not
multiply the leading entries by their multiplicative inverses to make all the
leading entries equal to 1. This means that the only elementary row operation
used in this method will be of type 3. I will still be referring to this matrix as
B. Then,

A = IA

E−1EA = E−1EIA

... where E−1 is the string of opposite row operations that invert E. The
identity matrix can commute, and so:

IA = E−1IEA

A = E−1B

Note that B will be upper triangular as it is almost in RREF form, and E−1

will be lower triangular with a main diagonal of ones since we only used type 3
elementary row operations. Therefore A = LU where L = E−1 and U = B.

Let’s do an example of this to solidify this process:

Find the LU factorization of the following matrix:1 2 3 2
4 3 1 1
1 2 3 0



Example 2.1.11 LU Factorization

To do this process, begin with:1 2 3 2
4 3 1 1
1 2 3 0

 =

1 0 0
0 1 0
0 0 1

1 2 3 2
4 3 1 1
1 2 3 0
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Now we take the right matrix to its almost-REF form using only type 3 row
operations. Each row operation can be represented as E, and thus to keep the
equality true we apply the inverse of the same row operation to the identity
matrix.

R2 → R2 − 4R1

=

1 0 0
4 1 0
0 0 1

1 2 3 2
0 −5 −11 −7
1 2 3 0


R3 → R3 −R1

=

1 0 0
4 1 0
1 0 1

1 2 3 2
0 −5 −11 −7
0 0 0 −2


... and so we have the original matrix equal to a lower triangular matrix with
a main diagonal of all zeros, and an upper triangular matrix. I want to note
here that you can use type 2 row operations (multiplying by a scalar) in this
process, as long as in the end you invert all those type 2 operations so that the
main diagonal of the L matrix is all ones.

Now let’s see how we can use this to solve systems of equations. Given some
system in the form:

A~x = ~b

Recall our goal is to solve for ~x. If we can can find the LU factorization of A
then:

LU~x = ~b

... and so typically we denote:
U~x = ~y

... which is also a SoLE. First we need to compute ~y using another new system
created by the substitution:

L~y = ~b

... whose solutions for ~y can be computed very fast due to the form of L. Note
that ~y will always have a unique solution. That vector ~y can be substituted
back into the equation U~x = ~y, and we can essentially just read off the results
for ~x due to the form of U . Let’s use the matrix from our last example as the
A matrix of a SoLE.
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Solve the system using LU factorization:

1 2 3 2
4 3 1 1
1 2 3 0



x
y
z
w

 =

1
2
3



Example 2.1.12 Solving a SoLE using LU

Note that we know:1 2 3 2
4 3 1 1
1 2 3 0

 =

1 0 0
4 1 0
1 0 1

1 2 3 2
0 −5 −11 −7
0 0 0 −2


... and so the system can be changed into:

LU~x = ~b1 0 0
4 1 0
1 0 1

1 2 3 2
0 −5 −11 −7
0 0 0 −2



x
y
z
w

 =

1
2
3


We can break this system up using the following substitution which results in
two systems:

U~x = ~y

... which gives us:
L~y = ~b1 0 0

4 1 0
1 0 1

 ~y =

1
2
3


Which can be solved very quickly using an augmented matrix:1 0 0 1

4 1 0 2
1 0 1 3


⇓ Through Elementary Row Operations... ⇓1 0 0 1

0 1 0 −2
0 0 1 2


Which tells us that:

~y =

 1
−2
2
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We can now solve for ~x in the system:

U~x = ~y

1 2 3 2
0 −5 −11 −7
0 0 0 −2



x
y
z
w

 =

 1
−2
2


... solving this system is already half-way complete since the matrix is already
almost in REF. This yields us the solution:

x = −3

5
+

7

5
t

y =
9

5
− 11

5
t

z = t

w = −1

Essentially the idea here is that we reduce the Gaussian-Elimination into
two simpler cases of systems to solve, both of which are already partially solved.

This concludes the entirety of Chapter 2. After this chapter you have the skills
to do all the main matrix operations, and you are also able to find the LU
factorization of a matrix. This chapter also introduces important ideas such
as relating the algebraic methods used to solve SoLEs in Chapter 1 to matrix
operations studied in Chapter 2.

3 Chapter 3: Determinants

64


